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Mathematical modeling of the cyclic drying of a dispersed material moving in the ascending and descending
flows of a superheated steam has been performed. The dependence of the moisture content of particles on the
operating parameters of a pneumatic-transport system has been established.

By virtue of its well-known advantages (inert heat-transfer agent with a specific heat nearly twice as high as
the specific heat of air, integration of two or more processes in one apparatus, elimination of thermal pretreatment of
raw material in many cases, etc.), superheated-steam drying is a rational method of drying different materials [1]. In-
vestigation of the pneumatic-transport technology and equipment for drying of moist dispersed materials in the flow of
a superheated steam enables one, as evaluations show, to create rather compact and economical dryers. In this connec-
tion, the present work seeks to formulate a physical model of the process and to perform, on this basis, its mathemati-
cal modeling for establishing the influence of different physical, hydrodynamic, and thermophysical factors on the
intensity of the process of drying.

Figure 1 diagrammatically shows the ith cycle of the process of drying of a moist dispersed material in the
ascending (a) and descending (b) steam flows. A physical model of the process is based on the following assumptions:

(a) the process follows the regime of decreasing drying rate;
(b) when the temperature of particles is lower than the critical temperature of the steam, we allow for its con-

densation on the particle surface; subsequent removal of the condensed moisture occurs in the regime of constant dry-
ing rate;

(c) the temperature of the steam escaping from the particles is equal to the particle temperature;
(d) constant pressure is maintained in the system;
(e) conductive transfer of heat is disregarded;
(f) drying occurs under external-problem conditions;
(g) particle-momentum loss in passage from one riser to the other is disregarded (Fig. 1).
A mathematical model of drying involves the following equations describing the process in the ith cycle (for

the sake of simplicity we have omitted the notation of the cycle in the equations.)
1. Continuity Equation for Solid Particles:

d (ρs (1 − ε) us)
dx

 = ρs
0
 (1 − ε) us 

dcls

dx
 . (1)

With account for ρs = ρs
0(1 + cls), we obtain

d
dx

 (us (1 − ε)) = 0 . (2)

Equation (2) demonstrates that the volumetric flow rate of particles is preserved in the system.
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2. Equation of Motion of a Solid Particle. The force acting on a particle on the source side of the gas flow
is calculated from the well-known Ergun formula [2]. The equation of motion of a particle of variable mass
(Meshcherskii equation) has the form [3]

ρs 
dus

dt
 − ur

s
 
dρs

dt
 = & ρsg + sign (Rer) 

µf
2

ρfd
3 



150 

1 − ε

ε3  |Rer| + 1.75 
1

ε3 Rer
2


 . (3)

A minus sign before the first term on the right-hand side of (3) refers to the case of motion of the lift riser
(Fig. 1a), and a plus sign refers to the motion in the drop riser (Fig. 1b). With account for dt = dx ⁄ us, ρs =
ρs

0(1 + cls), and uf
s C 0, from (3) we obtain

us (1 + cls) 
dus

dx
 = & g (1 + cls) + sign (Ref) 

µf
2

ρs
0ρfd

3 



150 

1 − ε

(ε)3
 |Rer| + 1.75 

1

(ε)3
 (Rer)

2


 . (4)

3. Continuity Equation for the Steam:

d (ρfuf)
dx

 = − ρs
0
 (1 − ε) us 

dcls

dx
 . (5)

Equation (5) is consistent with (1); here, we obtain

d (ρs (1 − ε) us + ρfuf)
dx

 = 0 .

Fig. 1. Model of drying in the pneumatic-transport system: a and b) first and
second halves of a cycle.
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At constant pressure, we have ρf = ρf(Tf) and can write Eq. (5) as

ρf 
duf

dx
 = − ρs

0
 (1 − ε) us 

dcls

dx
 − uf 

dρf

dTf
 
dTf
dx

 . (6)

Assuming that steam is an ideal gas, we take the dependence ρf(Tf) in the form

ρf = ρf
0
Tf

0 ⁄ Tf .
(7)

Hence for dρf
 ⁄ dTf we have

dρf
 ⁄ dTf = − ρf

0
Tf

0 ⁄ Tf
2
 . (8)

4. Heat-Conduction Equation for the Steam. With account for assumption (c), it is written in the form

d

dx
 ρfufIf

f
 = − 

2α
R

 (Tf − Tw) + 
6 (1 − ε)

d
 α∗ (Ts − Tf) − ρs

0
 (1 − ε) us 


If

s
 (1 − UT) + If

f
UT


 

dcls
dx

 . (9)

Using (5) and the equality If
f = q + cf(Tf − Tcr) + cliq(Tcr − 273), we obtain

ρfcfuf 
dTf

dx
 = − 

2α
R

 (Tf − Tw) + 
6 (1 − ε)

d
 α∗ (Ts − Tf) + ρs

0
 (1 − ε) us (1 − UT) If

f
 − If

s
 

dcls

dx
 . (10)

Finally the heat-conduction equation for the steam will have the form (If
f − If

s = cf(Tf − Ts))

ρfcfuf 
dTf

dx
 = − 

2α
R

 (Tf − Tw) + 
6 (1 − ε)

d
 α∗ (Ts − Tf) + ρs

0
 (1 − ε) us (1 − UT) cf (Tf − Ts) 

dcls

dx
 . (11)

5. Heat-Conduction Equation for Particles (with the use of assumption (c)) is

d

dx
 






ρs

0
csTs + ρs

0
clsIliq




 (1 − ε) us




 = 

6 (1 − ε) α∗
d

 (Tf − Ts) + ρs
0
 (1 − ε) us 


If

s
 (1 − UT) + If

f
UT


 

dcls

dx
 . (12)

With account for Eq. (2), it is transformed to

ρs
0
csus 




1 + cls 

cliq

cs




 
dTs

dx
 = 

6α∗
dx

 (Tf − Ts) + ρs
0
us 



If
s
 − Iliq + UT 




If
f
 − If

s






 
dcls
dx

 . (13)

Since we have If
s − Iliq = q + (cliq − cf)(Tcr − Ts), the heat-conduction equation for particles will be determined as

ρs
0
csus 




1 + cls 

cliq
cs




 
dTs

dx
 = 

6α∗
dx

 (Tf − Ts) + ρs
0
us 

q + (cliq − cf) (Tcr − Ts) + UTcf (Tf − Ts) 

dcls

dx
 . (14)

A combination of (11) and (14) yields the equation

ρfcfuf 
dTf

dx
 + ρs

0
 (1 − ε) csus 




1 + cls 

cliq

cs




 
dTs

dx
 =
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= 
2α
R

 (Tw − Tf) + ρs
0
 (1 − ε) us 


q + (cliq − cf) (Tcr − Ts) + cf (Tf − Ts) 

dcls

dx
 , (15)

which no longer contains the Heaviside function and consequently has the same form in the case of both condensation
of the steam and evaporation of particles from it.

6. Kinetic Equation. With account for assumptions (a) and (b), the equation of drying kinetics can be repre-
sented in the following form:

ρs
0
 (1 − ε) us 

dcls

dx
 = 

6 (1 − ε)
d

 βρs
0
 (cl − cls) (1 − Uc) + 

6 (1 − ε)
d

 α~ 
(Tcr − Ts)

1 + cliq (Tcr − 273)
 UTUc +

+ 
6 (1 − ε)

d
 α∗ 

(Ts − Tf)
(q + (cliq − cf) (Tcr − Ts))

 Uc (1 − UT) .
(16)

Setting the equilibrium moisture content cl = 0 [4], we obtain

ρs
0
 (1 − ε) us 

dcls

dx
 = − 

6 (1 − ε)
d

 βρs
0
cls (1 − UT) (1 − Uc) + 

6 (1 − ε)
d

 α~ ×

× 
(Tcr − Ts)

q + cliq (Tcr − 273)
 UTUc + 

6 (1 − ε)
d

 α∗ 
(Ts − Tf)

q + (cliq − cf) (Tcr − Ts)
 Uc (1 − UT) .

(17)

The kinetic equation under the conditions of condensation of moisture has been obtained from the balance relation

ρs
0
 (1 − ε) us 


q + cliq (Tcr − 273) 

dcls

dx
 = 

6 (1 − ε)
d

 α~ (Tcr − Ts) ,

which represents the value of the heat flux entering the particles through a condensate film. Furthermore, the last term
in (16) and (17) allows for the evaporation of moisture condensed on the particles in the regime of constant drying
rate, when the entire heat to the particles is consumed by the evaporation of free moisture.

The obtained equations (2), (4), (6), (11), (14), and (17) enable us to calculate six unknown functions uf(x),
us(x), Tf(x), Ts(x), ε(x), and cls(x). Boundary conditions with allowance for cyclicity (i is the cycle No.) have the form
(see Fig. 1)

Tf
1
 (0) = Tf

0
 ,   Tf

 i
 (0) = Tf

 i−1
 (2L) ,

Ts
1
 (0) = Ts

0
 ,   Ts

 i
 (0) = Ts

 i−1
 (2L) ,

ε1
 (0) = ε0

 ,   εi
 (0) = εi−1

 (2L) ,

cls
 1

 (0) = cls
 0

 ,   cls
 i
 (0) = cls

 i−1
 (2L) ,

us
1
 (0) = 

uf
0

ε0
 − 

(ut
∗)0
ε0

 ,   us
i
 (0) = us

i−1
 (2L) ,

uf
1
 (0) = uf

0
 ,   uf

i
 (0) = uf

0
 
Tf

 i−1
 (2L)

Tf
0  ,   i = 2, 3, ... .

(18)
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The last condition requires explanation. Since a constant pressure is maintained in the system, the entire steam
released from the particles must be removed from the dryer. Within the framework of this model, it is assumed that
the excess steam generated in the cycle is removed at the end of it and thereby the constancy of the mass rate of flow
of the steam is maintained:

Jf = ρf
0
uf

0
 = ρf

i
 (0) uf

i
 (0) (19)

or

uf
i
 (0) = ρf

0
 

uf
0

ρf
i
 (0)

 . (20)

With allowance for (7) and for the first boundary condition in (18), we obtain the boundary condition sought for the
steam velocity:

uf
i
 (0) = uf

0
 
Tf

i−1
 (2L)

Tf
0  . (21)

We write the resulting system in dimensionless form:

d ((1 − ε) us′)
dx′

 = 0 , (22)

us′ (1 + cls) 
dus′

dx′
 = & 

1 + cls

Frt

 + 
sign (Rer)

Frt Ar
 



150 

1 − ε

ε3  |Rer| + 1.75 
1

ε3 Rer
2


 , (23)

ρf

ρf
0
 
duf′

dx′
 = − 

ρs
0

ρf
0
 (1 − ε) us′ 

dcls

dx′
 − uf′ 

Tf
0
 − Ts

0

ρf
0

 
dρf

dTf

 
dθf

dx′
 , (24)

ρf

ρf
0
 uf′ 

dθf

dx′
 = − 2 

L

R
 St (θf − θw) + 6 (1 − ε) 

L

d
 St∗ (θs − θf) + 

ρs
0

ρf
0
 (1 − ε) us′ (θf − θs) 

dcls

dx′
 (1 − UT) , (25)

us′ 



1 + cls 

cliq

cs




 
dθs

dx′
 = 6 

L

d
 St∗

cfρf
0

csρs
0 (θf − θs) + 





1

Ja
 + 

cliq − cf

cs

 (θcr − θs) + 
cf

cs

 (θf − θs) UT



 us′ 

dcls

dx′
 , (26)

dcls

dx′
 = − 6 

L

dus′
 



cls β′ (1 − UT) (1 − Uc) − 

α~ (Tf
0
 − Ts

0) (θcr − θs)

ρs
0
 (uf

0
 − (ut

∗)0) (q + cliq (Tcr − 273))
 UTUc −

− 
α∗ (Tf

0
 − Ts

0) (θs − θf)

ρs
0
 (uf

0
 − (ut

∗)0) (q + (cliq − cf) (Tcr − Ts))
 (1 − UT) Uc




 .

(27)
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The boundary conditions are as follows:

θf
i
 (0) = 1 ,   θf

i
 (0) = θf

i−1
 (2) ,

θs
i
 (0) = 0 ,   θs

i
 (0) = θs

i−1
 (2) ,

ε1(0) = ε0
 ,   εi

 (0) = εi−1
 (2) ,

cls
 1

 (0) = cls
 0

 ,   cls
 i
 (0) = cls

 i−1
 (2) ,

(us′)
1
 (0) = 








uf
0

ε0
 − 
(ut
∗)0
ε0







  ⁄ uf

0
 − (ut

∗)0 ,   (us′)
i
 (0) = (us′)

i−1
 (2) ,

(uf′)
1
 (0) = uf

0 ⁄ uf
0
 − (ut

∗)0 ,   (uf′)
i
 (0) = 

uf
0

(uf
0
 − (ut

∗)0)
 
Tf

i−1
 (2)

Tf
0  ,   i = 2, 3, ... .

(28)

Thus, the process of drying under pneumatic-transport conditions is determined by the following dimensionless
parameters:

Ar,  Frt
∗
,  Ja,  Rer,  St,  St∗,  β′ ,     

L

d
 ,   

L

R
 ,   

ρf
0

ρs
0 ,   

cf

cs

 ,   
cliq

cs

 ,   ε0
 . (29)

The values of the heat-exchange coefficients α and α∗ involved in the numbers St and St∗ are determined from the
following dependences [5, 6]:

Nu = 
αd

λf
 = 0.078Re

0.66µ0.45
 + 

d

λf
 σ0 

(Tfb
 2

 + Tw
 2) (Tfb + Tw)

1 ⁄ εw + 1 ⁄ εfb − 1
 , (30)

Nu∗ = 
α∗d

λf
 = 2 + 0.6 |Rer|

 ⁄ ε

1 ⁄ 2
 Pr

1 ⁄ 3 ,   
|Rer|

ε
 < 200 . (31)

The heat-exchange coefficient in condensation of moisture is found as [7]

α~ = 
λliq

δ
 . (32)

The thickness of the condensate film can be determined from the balance relation

πd
2ρliqδ = 

πd
3

6
 ρs

0
 



cls − cls

 0

 , (33)

whence we have the following dependence for calculation of α~:

α~ = 
6λliqρliq

dρs
0
 (cls − cls

 0)
 . (34)
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The functional dependence of the effective drying rate is evaluated from the assumption of the similarity of
the processes of interphase heat and mass exchange under external-problem conditions (hypothesis (f)), when the main
resistance to the transfer of the steam is set up by its diffusion from the particle surface into the volume:

Sh F A⋅Nu∗ 
ρf

0

ρs
0
 , (35)

where Sh = βd ⁄ Df. From (35), for β′ we have

β′ = A 
Nu∗

Re
0
Sc

 
ρf

0

ρs
0 . (36)

The dimensionless parameter A thereby plays the role of a single "fitting" parameter of the model. Its value
is determined according to the regular procedure by comparing experimental and calculated cls(x) values.

The results of numerical modeling of the process of drying are presented in Figs. 2 and 3. We note that ∆x′
= 2 corresponds to one cycle (∆N = 1). To calculate the basic variant of the drying we used the following initial data:

the riser: L = 2 m, R = 0.015 m, Tw = 573 K, and εw = 0.8;
particles: d = 0.002 m, cs = 2700 J/(kg⋅K), cls

 0 = 0.75, ρs
0 = 420 kg/m3, and Ts

0 = 323 K;
the two-phase flow: ε0 = 0.4, εfb = 0.9, Jf

0 = 10 kg/(m2⋅sec), and Js
0 = 3 kg/(m2⋅sec);

the steam (p = 2 atm and Tf
cr = 393 K): λf = 0.0337 W/(m⋅K), ρf

0 = 0.926 kg/m3, νf = 1.71⋅10−5 m2/sec, cf
= 2046 J/(kg⋅K), Df = 2.31⋅10−5 m2/sec, Pr = 0.967, Sc = 0.74, Tf

0 = 473 K, uf
0 = 10.8 m/sec, and A = 0.5;

water: λliq = 0.55 W/(m⋅K), ρliq = 1000 kg/m3, and cliq = 4215 J/(kg⋅K).
To determine the lower bound of existence of pneumatic transport (bridging velocity ub) we used the formula [8]

ub − ut

ut
 = 0.02Js

∗
 , (37)

based on which we obtained the expression for the minimum mass rate of flow of the steam

Fig. 2. Velocity (a), phase temperature (b), moisture content (c), and porosity
(d) of the dispersed flow vs. number of cycles (basic variant): 1) steam; 2)
particles. u, m/sec.
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(Jf
0)min = Js

0
 
1 + 0.02Js

∗

Js
∗

 .
(38)

The discontinuous character of the functions uf(N) is attributed to the removal of the excess steam at the end
of each cycle (see condition (21)). Figure 2 corresponds to the basic varriant. The basic regularities of drying that have
been obtained in the present work are given in Fig. 3. As is seen, the strongest influence on the drying intensity is
exerted by the diameter of particles and their initial humidity (Figs. 3a and b). The influence of the initial particle
temperature is more pronounced on the initial portion; next this influence becomes weaker (Fig. 3c). The value of the
mass particle flux in the investigated range of variation in the parameters exerts no influence, in practice, on the de-
pendence cls(N) (Fig. 3e). An interesting and rather unexpected conclusion (important for practical implementation of
the process) on the small influence of the initial steam temperature follows from an analysis of Fig. 3d. Such a de-
pendence cls(Tf

0, N) is attributable to the opposite influence of Tf
0 on the factors determining drying. Indeed, the steam

viscosity increases with Tf
0. This leads to a drop in the relative phase velocity determining the values of the coeffi-

cients of heat and mass exchange of a moist particle with the steam flow. At the same time, growth in the steam tem-
perature causes the transfer potential Tf

0 − Ts
0 to increase.

The results of numerical experiments were generalized in the form of the formula for the dimensionless effective
drying rate (cls

 0 − cls
 N)/N. The use of the system of dimensionless quantities (29) seemed inefficient because of their large

number. Therefore, the generalization was based on the apparatus (developed in [9]) of similarity theory of transfer proc-
esses in disperse systems. The quantity sought was represented in the form of the following functional dependence:

Fig. 3. Moisture-content of a dispersed material vs. number of cycles for dif-
ferent values of the particle diameter (a) [(1) d = 1, 2) 2, and 3) 3 mm], initial
moisture content (b) [(1) cls

 0 = 0.5, 2) 0.75, and 3) 1], initial particle tempera-
ture (c) [(1) Ts

0 = 293. 2) 323, and 3) 363 K], initial steam temperature (d)
[(1) Tf

0 = 373, 2) 423, and 3) 473 K], mass particle flux (e) [(1) Js
0 = 1, 2) 3,

and 3) 5 kg/(m2⋅sec)], and mass steam flux (f) [(1) Jf = 8, 2) 10, and 3) 12
kg/(m2⋅sec)].
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N

(cls
 0

 − cls
 N)

 = f 






J
_

s, Ja, Fr, Ar, Re
0
, 

Tf
0
 − Ts

0

Tf
0







 . (39)

Processing of the experimental data obtained by the least-squares method allowed the formula

N

cls
 0

 − cls
 N

 = 0.15 J
_

s
 −0.15

 Ja
−0.35

 Fr
0.35

 







Tf
0
 − Ts

0

Tf
0








0.6

 Ar
0.8

 (Re
0)−0.54

 . (40)

The standard error of calculation from (40) amounted to 24%. The range of variation in the system’s parameters was
as follows: L0 = 1.5–2.5 m, d = 0.001–0.002 m, cls

 0 = 0.5–1, Ts
0 = 293–363 K, Tf

0 = 423–523 K, Js
0 = 1–3 kg/(m2⋅sec),

and Jf
0 = (1–3)(Jf

0)min.
Thus, in this work, we have formulated the physical model of the process of drying of a dispersed material

by a superheated steam in a pneumatic-transport system. A numerical analysis of the mathematical model has enabled
us to establish the influence of different parameters of the system on the character of the process of drying. The sim-
plicity of the model and allowance for the main factors influencing the process of convective drying make it possible
to efficiently apply it to practical calculations.

NOTATION

Ar = 
gd3ρs

0

νf
2ρf

, Archimedes number; cf, cliq, and cs, specific heats of the steam, water, and solid particles,

J/(kg⋅K); cls, moisture content of particles; cls
N, moisture content of particles at the end of the Nth cycle; d, particle

diameter, m; Df, diffusion coefficient, m2/sec; Frt = (uf
0 − ut)

2 ⁄ gL, Froude number; g, free-fall acceleration, m/sec2;

If and Iliq, enthalpies of the steam and water, J/kg; Jf = ρfuf and Js = ρs(1 − ε)us, mass rates of flow of the

steam and particles, kg/(m2⋅sec); Js
∗ = Js

0 ⁄ ρfut; J
_

s = Js
0 ⁄ ρs(uf

0 − ut) ;  Ja = cs(Tf
0 − Ts

0)/q, Jacob number; L, riser

height, m; Nu and Nu∗, Nusselt numbers; N, number of cycles; Pr, Prandtl number; p, pressure, atm; q, specific

heat of vaporization, J/kg; R, tube radius, m; Re = 
ufd

ενf
, Rer = 

urd

νf
, Ref

0 = 
ufd

νf
0

, and Re0 = 
(uf

0 − ut)d

νf
, Reynolds

numbers; Sh, Sherwood number; St = 
α

cfρf
0(uf

0 − (ut
∗)0)

 and St∗ = 
α∗

cfρf
0(uf

0 − ut
∗)

, Stanton numbers; Sc = 
νf

Df
, Schmidt

number; t, time; Tf and Ts, temperatures of the steam and particles, K; Tw, temperature of the riser wall, K;

UT and Uc, Heaviside functions; UT = 1 (Ts ≤ Tcr), UT = 0 (Ts > Tcr), Uc = 1 (cls ≥ cls
 0), and Uc = 0 (cls < cls

 0); uf and

us, velocities of the steam and particles, m/sec; ur = uf − usε, slip velocity of phases, m/sec; ur
s, relative velocity of the

steam escaping from a particle, m/sec; ut, free-fall velocity of a single particle, m/sec; uf′ = uf(uf
0 − ut) and us′ =

us(uf
0 − ut), dimensionless velocity of the steam and particles; ub, bridging velocity, m/sec; x, longitudinal coordinate;

x′ = x ⁄ L, dimensionless coordinate; α and α∗, heat-exchange coefficient, W/(m2⋅K); α~, effective coefficient of inter-

phase heat exchange under condensation conditions, W/(m2⋅K); β, effective drying rate, m/sec; β′ = β/(uf
0 − (ut

∗)0), di-

mensionless drying rate; δ, thickness of the condensate film, m; ε, porosity; εfb and εw, emissivity factor; θs =

Ts − Ts
0

Tf
0 − Ts

0
, θf = 

Tf − Ts
0

Tf
0 − Ts

0
, θw = 

Tw − Ts
0

Tf
0 − Ts

0
, and θcr = 

Tcr − Ts
0

Tf
0 − Ts

0
, dimensionless temperatures; λf and λliq, thermal conductivi-

tites of the steam and water, W/(m⋅K); µf and µliq, dynamic viscosities of the steam and water, kg/(m⋅sec); µ =
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(1 − ε)
ρs

0(1 + cls
 0 )

ρf
 
us
uf

; νf, kinematic viscosity of the steam, m2/sec; ρf and ρs = ρs
0(1 + cls), densities of the steam and

particles, kg/m3; ρs
0 and ρliq, densities of dry particles and water, kg/m3; σ0, Stefan–Boltzmann constant, W/(m2⋅K4).

Superscripts: f, steam to the particle (condensation); i, cycle No.; s, steam from the particle (drying); 0, initial state.
Subscripts: b, bridging; cr, critical; f, steam; fb, two-phase flow; liq, liquid; r, relative; s, particle; t, conditions of free-
fall acceleration of a single particle; w, riser wall.
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